DATATON SMARTSCRIPT

User’s Guide

Version 1.0

D dataton ___ JRUEMCATINRDIR

Introduction ... 3
SMARTSCRIPT Capabilities...............c.cccvevrnnnn.. 4
Scripting OVerviewcccceeveeveiiiieniieeeeeee 6
Component Standardscccoeveiiviieinnnne. 9

Installation

Getting Started
System Configuration

Macromediacooueeeeeeeeee e
WINOWS e,
Examplesccooiiiiiii 26
Macromedia Director..........occveeeeeeeeeeeeeenen. 26
Microsoft Excel...................

Microsoft PowerPoint

Microsoft Visual Basic........cooveeeeeeeeeeeeeenen. 30
Referenceooovvvviiiiiiiiiieeeeae, 32
Macromedia Details............occoeeoeeeiieeeeee. 32
Windows Details

Datd TYPes.....ccevriiiiiiiiiiiieic e
Establishing Communication..............ccco...... 49

Performing Cues
Device Indexing
Miscellaneouscccoevieiiieiniiiiee

Dataton SMARTSCRIPT software and this
manual are © Copyright 1998, DATATON
UTVECKLINGS AB (“Dataton”). All rights

reserved.

Dataton TRAX, TOUCHLINK, Dataton PAX and
the Dataton logo are registered trademarks of
DATATON UTVECKLINGS AB. SMARTSCRIPT,
SMARTPAX QC, SMARTPAX, TRANSPAX+,
ARRLINK, SMARTLINK are trademarks of
DATATON UTVECKLINGS AB. All other
company and product names are trademarks or
registered trademarks of their respective owners.
Use of a term in this publication should not be
regakrded as affecting the validity of any trade-
mark.

The information in this manual has been care-
fully checked and is believed to be accurate.
However, Dataton assumes no responsibility for
any inaccuracies that may be contained in this
manual. In no event will Dataton be liable for
direct, indirect, specia|, incidental, or conse-
quential damages resulting from any defect or
omission in this manual, even if advised of the
possibility of such damages. The technical infor-
mation contained herein regarding features and
specifications is subject to change without notice.

Document number: 3949

1

SMARTSCRIPT

PC or Mac
running

SMARTSCRIPT

commands

SMARTPAX with

devices to control

INTRODUCTION

Dataton SMARTSCRIPT allows you to control external devices from any
supported software application and from custom written software. It is based
on industry standards such as ActiveX for Microsoft Windows 95/NT and Xira
for Macromedia Director and Authorware. Your computer talks to the external
devices through Dataton SMARTPAX — an intelligent, modem-sized box specif-
ically designed for multimedia device control. Software drivers downloaded
into SMARTPAX handle the communication protocol required for each device,
thereby offloading the host computer.

Software drivers are available for over 200 models of devices, such as audio
video, tape and discs players, matrix switchers, slide and video projectors,
production switchers, computer graphics stations, lighting, motors, anima-
tronics, etc. Based on many years of experience, those software drivers contain
all the detailed knowledge needed for reliable device control.

SMARTPAX connects to the serial port on your computer. Each SMARTPAX
controls up to four devices or sub-systems. The system is easily expanded by
daisy-chaining additional SMARTPAX units. The physical connection between
SMARTPAX and the device to be controlled is a smartlink cable, which
provides the correct signal and mating connectors. Smartlink cables are avail-
able for a variety of interfaces, ranging from simple switches and analog
outputs all the way up fo infrared, timecode and various kinds of serial data

(RS232, RS422, DMX-512 and MIDI).

Chapter 1: Introduction 3

SMARTSCRIPT
Capabilities

Using SMARTSCRIPT, you can control all devices listed in the Device Support
window in TRAX. The Device Support window in TRAX is the best, most up to
date, list of supported devices.

S[=———— Device Support

Level, DMH 512

Level, Fostex:DCH100

Level, MIDI:Control Change Input

Level, Niche:ACM™

Level, Yamaha:PFroM™ix 01

Fanel, BppleMomnitor k

Panel, Dataton:Touchlink
Fima, ApplaMacintash Sysiem Ciack
Time, Timecode:EBU:25 fps
Time, Timecode:5MPTE:29.97 fps DF
Time, Timecode:5MPTE:29.97 fps NDF
Time, Timecode:5MPTE:30 fps B&LW
Serial, Altinex:MY2608RS
Serial, Autopatch:4YDM]

| Download Everything | [Info...][I]uumluad]

TRAX has built-in functions for creating new drivers for devices that can be
controlled by serial data (RS232, RS422, MID, efc). Such device drivers can
then be used from SMARTSCRIPT, just like the standard drivers.

A separate tool is available for creating drivers for devices that can be
controlled using an infrared remote control. Contact your Dataton dealer for
further information about devices and drivers.

4

Chapter 1: Introduction

SMARTSCRIPT Cues

0 NOTE: The TRAX 3 application
program and handbook are
available free of charge under
the “Free Software” heading at
www.dataton.com.

The various CueXxx commands in SMARTSCRIPT mimic the corresponding
cues in TRAX. You will need a basic knowledge of TRAX in order to use
SMARTSCRIPT. If you’re not familiar with TRAX, you should at least read
chapter seven in the TRAX 3 handbook, which introduces the various cue types.

TRAX has a built-in database with details for each supported device. This fells

you how to configure the device and which smartlink cable you need to

connect it to SMARTPAX.

Supported Cues
Locate

Set/Fade

Trigger

Programming Hotes
Far frame accurate positioning, make sure that "Can Locate Time"
is checked in the device's dialog box, then use a Locate Time cue.

Ta play the disc, use a Trigger Play cue. Check the "Auta Level
ondoff” checkbox to turn the video output an automatically as you
start playing, or off when you stop playing. Alternatively, you can
uze a Set cue to control the video independently. Use O ar 100%
and set Rate to zero.

The Rewind and FastPwd Transport modes of the Trigger cue can't
be used if "Can Locate Time" is checked — you must use a Locate
Tirme cue to position the disc.

The audio channel switching and index display can be programmed
uzing the Device Specific Mode section of a Trigger cue.

Driver File: Dataton TRAX

Driver Yersion: 13

EAUDRATE

il

Copy Text

The database also tells you which cues you use to control the device. The

SMARTSCRIPT cue commands follow the same naming conventions as TRAX.
For example, the Locate Time cue in TRAX corresponds to the CuelocateTime

command in SMARTSCRIPT.

Chapter 1: Introduction

5

Sc ripting Overview Scripting allows you to control SMARTPAX or Dataton TRAX from your own
software. Building software solutions from already existing components saves
time and makes it possible to enhance one piece of software without affecting

(MGC/PC client SOHWGFG) the other. The scripting language and scripting standard act as the “glue”
between the pieces, allowing them to communicate.
SSriptigg + % The piece of software that provides a desired function or service is often called
glue a “server”, and the piece of software requiring the service is called a “client”.

The server and the client software may exist within the same computer. Alter-
(Server (eg, SMARTPAX)) natively, the server may run on its own computer or other dedicated hardware
connected via a serial port or a network.

When using SMARTSCRIPT, SMARTPAX acts as a server to your application,

providing control of the devices. SMARTSCRIPT sits between your application

and the system bus that talks to the SMARTPAX units. This allows your applica-
tion to communicate with the devices being controlled on a high level.

Likewise, TRAXSCRIPT allows your application to use TRAX as an even higher
level server, providing similar capabilities as SMARTSCRIPT plus the features
contributed by TRAX, such as timelines and multitasking.

Other Scripting Languages Although SMARTSCRIPT and TRAXSCRIPT provide their own vocabularies,
they are not full-fledged languages on their own. Instead SMARTSCRIPT and
TRAXSCRIPT team up with the scripting language of the host platform (eg,
Lingo for Macromedia products and Visual Basic for Microsoft products),
essentially enhancing these languages with specialized commands and func-
tions for controlling external devices.

6 Chapter 1: Introduction

Scripting versus TRAX The most common way of programming a Dataton system is by using Dataton
TRAX. This MacOS application program allows you to design and program
your system using an intuitive, icon-based, point-and-click interface. TRAX
provides the ultimate power and flexibility, with features such as:

* True multitasking, supporting a virtually unlimited number of concurrent
timelines and other tasks.
* Tight synchronization, both among timelines and relative external devices.

MacOS Computer
running TRAX

 External inputs using push-buttons, sensors or touch-panels for fully
interactive control.

Devices to Conrol Device status continuously displayed.

However, some applications don’t require those capabilities, or may need to

be integrated with other pieces of software or computer standards. SMART-

SCRIPT essentially replaces TRAX for running the system, and allows you to

control the SMARTPAX units and associated devices using the application of

your choice instead of TRAX.

[0 NOTE: When using SMARTSCRIPT, TRAX is still needed for the initial
system configuration (see “System Configuration” on page 13). Once the
system has been configured, and all device drivers downloaded to the
SMARTPAX units, TRAX is no longer required to run the system.

Chapter 1: Introduction 7

SMARTSCRIPT versus
TRAXSCRIPT

TRAXSCRIPT

commcndS(

Mac with TRAX

Computers

with TRAXSCRIPT

SMARTSCRIPT allows you to control all device functions directly through
SMARTPAX, but it doesn’t give you the capabilities provided by TRAX itself,
such as multiple timelines or tight synchronization. If you need some of those
capabilities, but still must be able to access them from another piece of soft-
ware or another computer, you can use TRAXSCRIPT instead. This allows your
application to talk o TRAX instead of directly to the SMARTPAX — thus
providing all the capabilities of TRAX as well as direct device control similar to
SMARTSCRIPT.

TRAXSCRIPT is particularly suitable for larger applications, where you may
have multiple clients accessing a shared pool of devices. These devices are
then managed through TRAX, which can be connected to the client computers
using a standard TCP/IP compatible network, a serial port or through Apple-
Script. Just like SMARTSCRIPT, TRAXSCRIPT is also supported by an Xtra for
Macromedia applications and an ActiveX for Windows applications.

To summarize, SMARTSCRIPT allows you to control the devices directly from a
single computer. It provides device control based on the drivers downloaded
into the SMARTPAX units, but doesn’t provide the higher level capabilities that
are part of TRAX. Nor does it need the TRAX computer fo run the system.

TRAXSCRIPT, on the other hand, allows you to control the system from multiple
computers or other devices (using a computer network, a serial data link or
AppleScipt). It allows for additional interactive capabilities, such as contact
closures, MIDI inputs, TOUCHLINK touch panels, wireless remote control, etc.
All these control sources can be active at the same time, if desired.

The additional capabilities provided by TRAXSCRIPT over SMARTSCRIPT
comes at the cost of increased system complexity and the necessity of having
the TRAX computer present in the finished system.

8 Chapter 1: Introduction

Component
Standards

Macromedia

In order to make software components talk to each other, a software compo-
nent standard is required. This standard allows software pieces to locate each
other and communicate using a common language. SMARTSCRIPT supports
two such standards:

* Microsoft ActiveX, the standard for Windows software components.
¢ Macromedia Xira, used in Director and Authorware.

These provide the same capabilities and are used in very similar ways. Due to
the somewhat richer ActiveX standard, the ActiveX implementation provides a
few alternatives for doing basic things, such as specifying which serial port to
use to talk to the SMARTPAX units. However, these are provided only for the
sake of convenience and adherence to the ActiveX standard. Specifically, they
don't provide any additional functionality over the Xtra implementation.

The standard for Windows software components is called ActiveX. ActiveX is
supported by a large number of Windows applications and programming
languages such as Microsoft PowerPoint, Excel, Visual C++ and Visual Basic,
as well as Borland Delphi, Asymetrix Toolbook and many others.

Most of the Microsoft applications use Visual Basic as their scripting language.
Borland Delphi uses Object Pascal and Asymetrix Toolbook has its own propri-
etary scripting language. Although the SMARTSCRIPT statements are very
simple and straightforward, you need a basic understanding of the host appli-
cation’s scripting language in order to use SMARTSCRIPT.

The standard for Macromedia software components is called Xtra. This is
supported by Director, Authorware and other Macromedia applications under

Chapter 1: Introduction 9

Installation

both MacOS and Windows. It ties into Macromedia’s scripting language,
called Lingo, and essentially extends Lingo with new capabilities.

After installing the SMARTSCRIPT Xtra and configuring the system, you can
control virtually any external presentation device using cues in Director’s Score
window, or through push-buttons and other inferactive controls. Although the
SMARTSCRIPT statements are very simple and straightforward, you need a
basic understanding of Macromedia’s Lingo language in order to use SMART-
SCRIPT.

(1 NOTE: When using Director or Authorware under Windows, you can
choose either the Xtra or the ActiveX implementation of SMARTSCRIPT.
However, in order to use the ActiveX implementation you need an addi-
tional Xtra-to-ActiveX adapter, available from Macromedia.

The SMARTSCRIPT software is available free of charge on the Internet from
www.dataton.com under the “Free Software” heading. There you'll also find
the latest revision of this handbook.

There are two versions of SMARTSCRIPT; one for MacOS and one for
Windows. The MacOS version includes the SMARTSCRIPT Xtra for Macro-
media running on MacOS (PowerPC only). The Windows version includes both
the ActiveX and Xtra implementations for Windows.

In addition to the correct version of SMARTSCRIPT, you'll also need the
following items:

e The host application of your choice (eg, Macromedia Director or Microsoft
Visual Basic, Excel or PowerPoint).

* The system description file matching the desired system configuration (see
“System Description File” on page 14).

10

Chapter 1: Introduction

* The Dataton cable to connect the computer to the SMARTPAX. For Macin-
tosh this is the TRAX CABLE (product number 3425) and for the PC this is
the PC CABLE (product number 3429).

* The required number of SMARTPAX control units, with power supplies (12V
DC ADAPTOR 3334 if using SMARTPAX QC, AC PAX ADAPTOR 3337 if
using SMARTPAX). Use Dataton SYSTEM CABLE to daisy-chain multiple
SMARTPAX units.

* The appropriate SMARTLINK cables for connecting the devices to be
controlled.

For more details on SMARTPAX, power supply and smartlink cables, please
refer to the TRAX 3 handbook. SMARTPAX QC, its power supply and some
additional SMARTLINK cables are described in the TRAX 3.5 addendum. Both
these manuals are available in Adobe Acrobat format on the Internet at
www.dataton.com under the “Free Software” heading. Alternatively, they can
be ordered through your Dataton dealer.

After obtaining “SMARTSCRIPT for MacOS”, you need to install it on your
computer before you can use it. Unpack the “SMARTSCRIPT for MacOS sit” file
using Stuffit Expander, or similar. This results in a folder named SMARTSCRIPT.
Open this folder and move the file named “SMARTSCRIPT.Mac” to the Xtras
folder, located in the same folder as your Director application. The folder also
contains an example Director movie and its accompanying system description
file (see “System Description File” on page 14). Make sure that the SDF file
stays in the same folder as the example movie.

01 NOTE: SMARTSCRIPT for MacOS runs only on PowerPC models. It does
not run on 68k Macs.

Chapter 1: Introduction 11

Windows After obtaining “SMARTSCRIPT for Windows”, you need to install it on your
computer before you can use it. Double-click the “SSWin.exe” file to unpack it.
It creates a folder named SMARTSCRIPT, containing two folders named

“Windows ActiveX” and “Macromedia Xtra”. Open the folder containing the
desired SMARTSCRIPT implementation.

For the Macromedia Xtra implementation of SMARTSCRIPT, simply move the
file named “SMARTSCRIPT.x32” to the Xtras folder, located in the same folder
as your Director.EXE application. The folder also contains a sample Director
presentation and its accompanying system description file (see “System
Description File” on page 14). Make sure that the SDF file is in the same folder
as the example movie.

For the Windows ActiveX implementation of SMARTSCRIPT, double-click the
Setup.EXE file. This installs the SMARTSCRIPT components as well as a sample
application in a folder of your choice. This sample is written in Visual Basic,
and it includes the source code as well as the finished application ready to run
together with its accompanying system description file.

[NOTE: The Xtra and ActiveX implementations of SMARTSCRIPT for
Windows run under Windows95, or later, as well as Windows NT 4.0, or
later. They do not run under Windows version 3 (ie, only 32-bit versions are
provided).

12 Chapter 1: Introduction

System
Configuration

GETTING STARTED

This chapter shows you how to use SMARTSCRIPT with Director or Visual Basic
as the host application. It assumes that SMARTSCRIPT has been installed on
your computer as described under “Installation” on page 10.

While SMARTSCRIPT contains all functions needed to control the external
devices once the system is set up, it does not include the functions required to
configure the system and download the device drivers to the SMARTPAX units.
SMARTSCRIPT assumes that the system is already configured properly, and
uses a system description file to learn about the system configuration.

If you know the system configuration in advance, you can ask your Dataton
dealer to configure the SMARTPAX units for you when you order them,
providing the matching system description file and smartlink cables.

Alternatively, you can do the system configuration yourself using DATATON
TRAX (MacOS only). TRAX is available free of charge on the infernet at
www.dataton.com. You'll also need the TRAX CABLE (product number 3425)
to connect the Mac to the SMARTPAX. Please refer to chapter 5 in the TRAX 3
handbook for details on how to configure the devices. The “Device Support”
section in chapter 3 of the TRAX 3 manual describes how to download the
device drivers to the SMARTPAX units.

[0 IMPORTANT: You must add all device icons to the Device window in
TRAX, and configure them as desired, before downloading the device
drivers to SMARTPAX. You can not use the “Device Drivers, Manual Mode”
setting in the Device Support window as this doesn’t provide the required
information in the system description file.

Chapter 2: Getting Started 13

System Description File SMARTSCRIPT uses a system description file to learn about the names and
other attributes of the devices to be controlled. You must inform SMARTSCRIPT
about the name of this system description file. This is done either when using
the Open command, or using the SysDescFile property (ActiveX only). The
name of the system description file usually ends with “.SDF”.

If your Dataton dealer delivered the SMARTPAX units pre-loaded with the
device drivers of your choice, a matching system description file should be
included. If not, please contact your Dataton dealer for assistance.

— If you configured your SMARTPAX units yourself, as described above, you
R must save the TRAX show file and create the system description file before quit-
First Floar Kiosk ting TRAX. To do so, choose “Save” on the File menu while holding down the
: Shift key. (This applies to TRAX version 3.5.2 or later. TRAX version 3.5.1 uses

the Option key instead of the Shift key.) Doing so saves the TRAX show file and

First F1 Kiaszk SDF T . .
et Faer e generates the system description file at the same time.

The system description file has the same name as the show file, but ends with
“.SDF”. For example, if you save the show using the name “First Floor Kiosk”
TRAX will also create a file named “First Floor Kiosk.SDF” in the same folder as
the show file.

[NOTE: If you forget to hold down the Shift key when choosing the Save
command, you must make a small change to the show before you can
choose the Save command again. Just moving a device icon a few pixels is
sufficient to re-enable the Save command.

O IMPORTANT: Keep the TRAX show file if you later need to re-configure
the system, for example in order to add more devices. TRAX can not read
the system description (SDF) file.

14 Chapter 2: Getting Started

Macromedia

The resulting system description file contains all information needed by
SMARTSCRIPT to control the devices. If you make any changes in TRAX that
require a new download to the SMARTPAX units, you must also re-generate
the system description file by holding down the Shift key when saving.

The system description file is a plain text file that can be opened using Simple-
Text or any other word processor. Do not make any changes in this file. If you
do, SMARTSCRIPT may not be able to read it, or some devices may not work

properly.

In order to use the system description file, it must reside on a disk accessible to
SMARTSCRIPT. For example, if you're using SMARTSCRIPT on a PC, you must
first transfer the system description file to the PC. If your computers are on a

network, you may be able to transfer the file using the network. If not, put the
file on a PC formatted floppy disk and transfer it manually to the PC.

[0 NOTE: In order to recognize PC-formatted disks, you must have the “PC
Exchange” control panel, or equivalent, installed on your Macintosh.

This is a step-by-step description of how to create a simple SMARTSCRIPT
application using Macromedia Director.

Before starting, make sure you have installed SMARTSCRIPT on your computer
as described on “Installation” on page 10, and that you have the system
description file matching your configuration. Alternatively, if you just want to
check out the software, use the example system description file named
“SSTest.SDF”, included with SMARTSCRIPT. This file must be located in the
same folder as the Director movie.

Chapter 2: Getting Started 15

Connect the first SMARTPAX to the a free serial port. If you're using a PC then
you need the Dataton PC CABLE (product number 3429) connected to a free
COM-port. On the Mac, use a Dataton TRAX CABLE (product number 3425)
connected to the Modem or Printer port. Connect the appropriate power
supply to the SMARTPAX, and connect the devices using the appropriate
smartlink cables.

Activating SMARTSCRIPT Start Director and open the Script window. Enter the startMovie and stopMovie
from Director handlers, as shown below.
EO=————— Movie Stript | =—"———— 1=
[+«] | | (@] |
[startMovie | |E||::|ﬁ| |L.|:E§‘ Ol:.,):l
on startfMovie
S50pen the mowiePath & "SS5Test . SOF", “COMT"

end

on stoplovie
S5C1o=e
end

Choose Save on the File menu. Save the movie in the same folder as the system
description file you want to use.

[0 IMPORTANT: You must save the movie to disk before you attempt to run
it. The startMovie script above uses “the moviePath” to locate the SDF file.
This feature doesn’t work properly until the movie has been saved to disk.

16 Chapter 2: Getting Started

Adding a Button to the Movie Choose “Control: Push Button” on the Insert menu. Type “Locate” into the
button. Right-click the button (Control-click on the Mac) and choose “Cast
Member Script” on the contextual menu.

FLD] | Cis

| mousellp - I = | :_.’l,*__,_l L‘l:g

on mousellp

Locate

S5Cuelocotelumber "P1", 3
end

Cut Cells
Copy Cells
Paste

Edit Cast Member
Launch External Editor
Align...

Font...

Sprite Properties...

Sprite Script...

Cast Member Properties...
Cast Member Script...

Enter the script as shown above into the case member script for the button.

Open the Message window by choosing “Message” on the Window menu.
Click the Play button in Director’s Control Panel to run the movie. SMART-
SCRIPT should now send a command to tell device “P1” to go to position five.

0 NOTE: For the above to work, it is assumed that the system configuration
indeed includes a device named “P1” that is capable of locating to a
numeric position. If that's not the case, SMARTSCRIPT will display an error

message when you attempt to run the script.

Chapter 2: Getting Started 17

Where to Go from Here

In order to really see something happening, you must of course have the actual
device connected, as described under “Hardware Hook-up” on page 16. If
any error occurs, this will be indicated in the Message window.

O IMPORTANT: Keep the Message window open while working with
SMARTSCRIPT. If the Message window is closed, errors may go unnoticed.
See “Error Codes” on page 70 for more details on how to handle errors.

Read the reference chapter, page 32, to learn more about the various cue
types and other scripting commands. Take a look at the enclosed example
Director movie, which demonstrates most commands. If you’re new to Director
and Lingo, it could be a good idea to read one of the many book available on
how to program in Lingo.

18

Chapter 2: Getting Started

Windows

This is a step-by-step description of how to create a simple SMARTSCRIPT
application using Microsoft Visual Basic (version 5.0 or later). Many other
applications — particularly those from Microsoft — have a programming envi-
ronment almost identical to that of Visual Basic.

If you use another programming language, the SMARTSCRIPT cues,
commands and properties should be virtually identical to those presented by
Visual Basic. Other language constructs, and the procedure required fo create
programs, will be different, though. Please refer to the appropriate documen-
tation for your programming language for details on how to use ActiveX
controls.

Before starting, make sure you have installed SMARTSCRIPT for Windows as
described under “Installation” on page 10, and that you have the system
description file matching your configuration. Alternatively, if you just want to

check out the software, use the example system description file named
“SSTest.SDF”, included with SMARTSCRIPT.

Connect the first SMARTPAX to a serial port on the PC using the Dataton PC
CABLE. Connect the appropriate power supply to the SMARTPAX, and connect
the devices using the appropriate smartlink cables.

Chapter 2: Getting Started 19

Creating the Visual Basic Start Visual Basic and create a new project of type “Standard EXE”.
Project
2] =]

Mew Project
- Mjgrosoft .
‘ isual

Mew |E:<isting| Hecentl

D By

SR lEE Activer EXE AckiveX DLL Activer WE Application

%

Control Wizard
B B B
Ackivex Actives Addin WE
Docurment DLL Docurnent EXE Professio...

Cahicel

Help

i

[T Don't shawe this dialag in the future

Adding SMARTSCRIPT to the This step will add SMARTSCRIPT o the Visual Basic toolbox, making it avail-
Toolbox able for use in your project.
¢ Make sure that the toolbox is visible. If not, choose “Toolbox” on the View
menu to display it.

20 Chapter 2: Getting Started

® Choose “Components...” on the Project menu to display the list of available
ActiveX controls.

¢ Make sure that “Dataton SMARTSCRIPT” is checked in the list.

Cartrols | Designersl Inzertable Dbiectsl

[Jacrobat Conkral For Ackivel -
] aTLMikeTest 1.0 Type Library
atan SMARTScript 1.0

" (3 &
[Dataton TRAXSCrpt Coma B
[IMarques Control Library — | oos
T =

[MCTwnd: Contral W e
[IMediaview 1.41 Japanese OLE Cankrol = E_‘_EI_

I Micrasoft Actives Plugin
[IMicrosaft Calendar Conkrol 5.0
[IMicrosaft Chart Cantral
[CIMicrosaft Carmm Cankral 5.0
I Micrasoft Comrmon Dialog Contral 5.0

I Micrasoft Data Bound Grid Library &l

[IMicrosaft Daka Bound Lisk Contrals 5.0 LI [Selected Thems Cnly

] &

—Dakakon SMARTScripk 1.0
Location: <:h., \Dataton_\Dakabon_SMART3cript. dil

QK I Cancel | Apply |

[0 NOTE: If “Dataton SMARTSCRIPT” doesn’t appear in the list, you have not
installed SMARTSCRIPT properly. See “Installation” on page 10.

Chapter 2: Getting Started 21

Adding SMARTSCRIPT to the

Main Form

Configuring SMARTSCRIPT

Properties - SMART H[=IE

ISMART SMARTScripk

Alphabetic |Categnrized I

—

(Mame)
ComPark
IgnoreErrors False
Inde:x

| eft 240

SMART

Tag
Top 120

1 - KCP_COmM1

e ey \Datakon S5 Test, SOF

SysDescFile
Marne of SDF File From
the system configurati

RAY describing
o

Enter the full path and file name for
your system description file here.

In order to use SMARTSCRIPT, its icon

N . & Forml == B3
must appear on an active form. Visual SOOI
Basic automatically creates a form B SO
named “Form1” when you create a new i ieTmiiiiiiiiiiiiiiiiiiii

“Standard EXE” project. To add the
SMARTSCRIPT icon to the form, first
select the SMARTSCRIPT icon in the
Toolbox, then draw the icon on the form.

Make sure that the SMARTSCRIPT icon is still selected in the Form window, as
indicated by the black selection handles around its icon (see above). Then
choose “Properties Window” on the View menu to display the list of SMART-
SCRIPT properties.

If you don’t see the SMARTSCRIPT properties in the Properties window, then
click the SMARTSCRIPT icon on the form so its selection handles appear.

Set the Name property to “SMART”, as shown to the left. Specify the serial port
to which you connected the SMARTPAX as the ComPort property by first
clicking the property and then choosing from the drop-down menu. Typically,
you would connect SMARTPAX to the serial port named COMT1, in which case
you would choose “1 - KCP_COM1” on the dropdown menu.

Enter the full path and file name of the system description file in the SysDescFile
property. SMARTSCRIPT will tell you if it can’t find the system description file.
The example system description file “SSTest.SDF” is located in the folder you
specified when you installed SMARTSCRIPT (see “Setup.EXE” under
“Windows” on page 12).

22

Chapter 2: Getting Started

Adding a Command Button to
the Form
window.

Project] - Microzoft Vizual Basic [design]

File Edit “iew Project Format Debug Rum Tools Add-Ins wWindow Help

Mo o [porweoway e 1

General |

NmA
faol [gl
Vo =R
EE um %
6o 0
B & ~
=
i

Command button.

w. Project] - Forml [Form]

=

|5tep CommandButton

Alphabetic |Categnrized|

.. .. m L] m

- L 2 —

R [&Hsooogoor

Sl False

B STEP —

Sl False

....................... (NDHE)
DovnPicture (Mone) j

Returns the name used in code
identify an object,

Choose the CommandButton icon in the Toolbox and draw a button on a form.
Set the Name and Caption properties of the button to STEP in the Properties

Make sure you set both the
Name and Caption proper-
ties to STEP.

Chapter 2: Getting Started

23

Scripting the Button’s Action

Double-click the button to open its code window. Enter a SMARTSCRIPT
command into the button like this:

™ Project] - Form1 [Code] Hi=E
ISTEP =] ICIick =]

Option Explicit

-

Private 3ub ZITEF Click()
SMART. CuelocateNumber "P1", 3|
End 2w cuelocatebumberidevice, manericPosition As LoRg) |

-

==4]_| v

You start with the name SMART, which is the name you gave to the SMART-
SCRIPT icon after adding it to the form. When you type the period following the
word SMART, a list of the possible actions that can be performed by SMART-
SCRIPT appears. Choose CuelocateNumber from this list, then type a space.
This displays the additional parameters required for this action as a smaill
window just below the script you're entering. Enter "P1" (including the quotes)
for the device parameter. This is the name of the device that is to perform the
cue. Now type a comma, followed by the second parameter, which is the
numeric position to locate. Enter the digit 3 here.

(1 NOTE: For the above to work, it is assumed that the system configuration
indeed includes a device named “P1” that is capable of locating to a
numeric position. If that's not the case, SMARTSCRIPT will display an error
message when you attempt to run the script.

24

Chapter 2: Getting Started

Running Your Script

Where to Go from Here

To try out your script, choose “Start” on the Run menu (or press F5). Click the
STEP button to tell the device “P1” to locate position 1. In order to actually see
something happening, you must of course have the physical device connected,
as described under “Hardware Hook-up” on page 19.

If you have another system configuration, then substitute an appropriate cue,
device name and other parameters in the above example. If you attempt to use
a kind of cue on a device to which it can not apply, or if you refer to a device
that doesn’t exist in the current system configuration, an error message will be
displayed when you attempt to run the script (see “Errors” on page 47).

Read the reference chapter, page 32, to learn more about the various cue
types and other scripting commands and properties. Open up the source code
for the enclosed example project, and look through the forms and their code.
If you're new to Visual Basic, you may also want to read one of the many
Visual Basic books available in most bookstores.

Chapter 2: Getting Started 25

3 EXAMPLES

This chapter provides some examples of what SMARTSCRIPT applications may
look like and accomplish. The screen-shots are taken from the sample applica-
tions that are enclosed with SMARTSCRIPT.

Macromedia Director The example below shows a simple pan and tilt control for a motorized lighting
fixture. The X and Y position of the lamp is controlled simply my moving the red
knob. This is an example of direct, interactive device control. The “Show”
section of the same sample application demonstrates how devices can be
orchestrated together with the graphical elements using Director’s Score
window. By controlling both the on-screen, graphical elements and the
external devices from the Score window, good synchronization can be
achieved.

Home
Interactive
Show
Information

Contact
Credits

This knob moves the spotlight.

+« Previous »

26 Chapter 3: Examples

This single SMARTSCRIPT
command controls the spot-
light's position.

The Director programming required to handle the interactive pan and tilt func-
tion is surprisingly simple. As you can see below, only a single line of code is
needed to control the device (shown in red). The remaining Lingo code is
required for calculating the pan and tilt values based on position of the knob.
The knob is managed by sprite number 21. Sprite 20 is a box that constrains
the knob’s movement. The pan and tilt positions are calculated by taking the
difference between the horizontal and vertical positions of the knob and its
enclosing box.

S=———————— Score Stript 86 =—————"P1=

L] | [8] | =
(e~ [B[=[E] [Z]E] O

on exitFrame

—— Get the position from the knob sprite within its constraining box
st tiltlevel to the locl of sprite 21 - the locl of sprite 20
set ponLlevel to the locH of sprite 21 - the locH of sprite 20

= Mowe the fizture to thot position

SSCueFadeTo [“"Pan™, "Tilt"1, [panLewel, tiltLewsll, 0.1

go to the frams
end

The resulting pan and tilt levels are then used as parameters to the SSCue-
FadeTo SMARTSCRIPT command. Note how they are passed to SSCueFadeTo
as an array by putting them within square brackets. Likewise, the names of the
“Pan” and “Tilt” functions to be controlled are also passed as a corresponding
array (see “Specifying Multiple Devices” on page 34).

The Macromedia Director sample application includes numerous other exam-
ples — both interactive and Score-controlled. Use the menu to the left and the
Next/Previous buttons in the lower right corner to see all the examples.

Chapter 3: Examples 27

Microsoft Excel The example below shows how a few buttons have been added to an Excel
spreadsheet in order to control a curtain. Note the SMARTSCRIPT icon,
providing the control functions, located just above the three buttons. (In a
normal application, the SMARTSCRIPT icon would of course be hidden.)

A ExcelTest1_xls == B3
A B [] E =
Maonth Jan Feb =]

Sales 3114 4711 Curtain Caontrol
Rental 411 621
Financial 122 95

Totals: 3647 4930, T

Cloze

z N
=]

=
L

i

b | M| Sheetl i She g

. ExcelTestl_xls - Sheetl [Code) Hmi=ERa
ICOpen j ICIick j
Frivate 3ub COpen Click() -
33.CueTrigger3witeh "Close™, KTS Off
33.CueTrigger3witeh "Open”, ET3_On

End Sub

-

H oz

The script shown above is displayed by double-clicking the Open button. It
contains two SMARTSCRIPT commands — one to turn off the “Close” switch and
another to turn on the “Open” switch. This ensures that the “Close” switch
always is turned off before activating the “Open” switch.

28 Chapter 3: Examples

Microsoft PowerPoint The example below shows how SMARTSCRIPT and a slider has been added to
a PowerPoint slide to control the room lights.

Y PowerPoint SMARTSCRIPT Demo_ppt

% PowerPoint SHARTSCRIPT Demo - Slide1 [Code) M= E3
ILeueI j IChange j

Private Sub newlLewvell)
Dim Value As Integer

[»]

Valus = Lewvel.Max - Level.Value
33.CueFadeTo "Chl"™, Value, 1
End Sub

Private 3ukb Level Changei)
newlLevel
End Sub

Private Jukb Level Scrolli)
newlLevel
End Sub

E%ﬂ_l

Move this slider to dim the
roomlights.

Ist Otr 2nd Qo 3rd Qv dth Qur

The script shown above to the left is displayed by double-clicking the slider. It
needs two handlers in order to respond both to the up/down arrows at the
ends of the slider as well as the slider’s knob. Both these handlers call on @
common sub-handler — named newlevel — which calculates the new value and
uses a CueFadeTo command to set the lamp named “Ch1” to the new
percentage value.

Chapter 3: Examples 29

Microsoft Visual
Basic

The example below shows a simple, 12-channel “lighting console”. Each
lighting scene you create using the sliders is stored in the spreadsheet-like grid
at the top.

In addition to the level of each channel, you can also specify the fade rate for
each scene. This fade rate is used when the scene is activated, either by
clicking it in the list or using the Next/Previous buttons.

& Lighting Console [|

Scene |Rate | 1 |2|3|4|5|5|?|8|S|1D|11|12A
25 30 8136 24 |0 | 100

Z nm-nm’

3 100 100 0 16 "

—_

Hate:l 4.2 -l_l- -~ - = = | = - - - - =]

e

N ST R
Scene 1 |_ - - . _
N [N [(R

Prewviouz : : : : - N :

-_I-

ENer:t Sceneé

The sliders, buttons and the grid at the top are all standard items that come as
part of Visual Basic. Some controls are built info Visual Basic and appear in the

toolbox automatically. Other controls must be activated manually just like
SMARTSCRIPT (see “Adding SMARTSCRIPT to the Toolbox” on page 20).

30

Chapter 3: Examples

The For loop collects
the scene levels and
sets the faders

The visual basic script shown below is performed when you go fo a scene using
the Next/Previous buttons (see previous page), or by clicking a scene in the list.

The desired scene number is provided as a parameter to the loadScene
subroutine.

M Project] - Conzole [Code) Hmi=ERa
I(General) j I(I]eclaratiuns) j

' Load an existing sScene by setting the sliders and rate from the fields.:zj

' Also updates the lights accordingly.

Private
Diim
Diim
Rate

accordingly.

The CueFadeTo
command fades all
the channels to the
specified levels.

For

Next

33.C
End Sub

ZJub load3cene (scene As Integer)

channel As Integer _J

levellist (KumChannels - 1) As 3ingle

.Text = Scenelist.TextMatrixiscene, kRateCol)

channel = 0 To KNumChannels - 1

Level = Secenelist.TextMatrixi(scene, channel + kDataCol)
lewvellist (channel) = Lewvel

setFaderValue channel, [Lewvel)

ueFadeTo GChannels, levellist, Rate.Text

-

i

=4 |

H oz

As you can see from the script, the amount of coding required to support
SMARTSCRIPT is very modest. Most of the code in a typical SMARTSCRIPT
based application deals with the user interface — ie, windows, buttons and
sliders — and other details related to Visual Basic itself.

Chapter 3: Examples

31

B/} REFERENCE

Macromedia Details

Accessing SMARTSCRIPT

Calling Conventions

This chapter looks at SMARTSCRIPT commands, properties and constants.

This section describes details pertaining to the Xtra implementation of
SMARTSCRIPT for Directo,r running under MacOS or Windows.

Assuming that you have installed SMARTSCRIPT as described under “Installa-
tion” on page 10, all SMARTSCRIPT commands are directly available from
Lingo. If you want to move SMARTSCRIPT to another computer, all you need is
the SMARTSCRIPT Xtra (“SMARTSCRIPT.Mac” on MacOS, SMARTSCRIPT.x32
on Windows), which must be placed in the Xtra folder, located in the same
folder as your Director application.

Before you can perform any of the Cue functions, you must first start the
communication using the Open command (see “Open” on page 49).

When performing a cue or other SMARTSCRIPT command, you simply append
any parameters right after the command. Parameters are comma separated.

SSCueTriggerSwitch "Open”, #KTS_On

The command above takes two parameters; the reference to the switch device
to be controlled and what to do with it (ie, turning it on). There's a blank
between the command and its first parameters.

O IMPORTANT: In the Xtra implementation of SMARTSCRIPT, all command
and function names are preceded by “SS”, as shown above. There’s no
space or other character between the “SS” and the command’s name.

32

Chapter 4: Reference

Functions

In addition to commands, SMARTSCRIPT also provides some functions. The
main difference between a command and a function is that a function returns
a result to the Lingo script. This result can be stored in a variable, or used in
calculations and other expressions.

This is an example of how you can convert a timecode position from a string
representation to its numeric form:

set numericTime = SSConveriStringToTime(”3:22/13", #KTF_SMPTE_DropFrame)

There are two main differences between a function, as shown above, and
regular commands:

* Parameters to functions are enclosed within parentheses.

* The value returned from the function must be used in an expression or stored
in a variable.

The function shown above converts the string “3:22/13" from SMPTE drop-
frame format to a number. This is often useful if you need to make calculations
involving time values. The result is stored in a variable named numericTime.

O IMPORTANT: When calling a function from Lingo, you must always
include the parentheses after the function name. This applies even if the
function doesn’t take any parameters, in which case there won’t be
anything at all between the parentheses.

Chapter 4: Reference 33

Constants

Specifying Multiple Devices

Errors

Some SMARTSCRIPT commands use predefined names to specify certain
parameters. These predefined names are called constants. For example, the
last parameter shown below is a constant defined by SMARTSCRIPT:

set numericTime = SSConveriStringToTime(”3:22/13", #KTF_SMPTE_DropFrame)

The KTF_SMPTE_DropFrame constant specifies what kind of timecode to
convert from.

0 IMPORTANT: In Lingo, constant names must be preceded by the #-sign,
as in the example above. There’s no space between the #-sign and the
constant name.

Sometimes you may want to apply a cue to more than one device. You can do
so by passing a list of device references, enclosed within square brackets:

SSCueDissolve [“P1", “P2"], 2.5, True

This cue performs a 2.5 second dissolve on device “P1” and “P2”. The list can
contain either device names or device indexes (see “Device Parameter” on

page 49).

When an error occurs in SMARTSCRIPT, it displays a message in the Message
window telling you what went wrong. Unfortunately, it is not possible for
SMARTSCRIPT to stop running your Lingo script and highlight the offending
statement.

These error messages are useful while creating and debugging your applica-
tion. However, you may want fo turn off any error messages originating from
Cue commands once you've finished testing your application. If IgnoreErrors is

34

Chapter 4: Reference

Windows Details

Accessing SMARTSCRIPT

set to TRUE, any errors in Cue commands will not be reported in the Message
window (see “IgnoreErrors” on page 68).

Regardless of whether IgnoreErrors is set to TRUE or FALSE, you can always
retrieve the error code related to the most recent SMARTSCRIPT command or
function using the LastError function (see “LastError” on page 69).

This section describes programming details pertaining specifically to the
ActiveX implementation of SMARTSCRIPT for Windows.

0 NOTE: If you're using the Xira implementation of SMARTSCRIPT under
Windows, please refer to “Macromedia Details” on page 32 for details.

In order to perform one of the SMARTSCRIPT commands or functions, you must
first draw a SMARTSCRIPT icon in a window (called “form” in Visual Basic).
See “Adding SMARTSCRIPT to the Main Form” on page 22. There can only be
a single SMARTSCRIPT icon active at a time.

[0 NOTE: The SMARTSCRIPT icon will not be drawn when you run your
finished application — it is only visible during design.

After adding the SMARTSCRIPT icon to the window, you must name it by
setting its Name property. In Visual Basic, this is done using the Properties
window. Make sure that the SMARTSCRIPT icon remains selected in the form
window. Use a short name, such as SMART or SS, as you'll need to use this
name whenever you want to perform any SMARTSCRIPT command.

Chapter 4: Reference 35

In Visual Basic, the SMARTSCRIPT object becomes accessible to all handlers in
that form using its assigned name. Thus, assuming that you set the Name prop-
erty of the SMARTSCRIPT object to “SMART”, you can then add a button to the
same form that accesses the SMART object. After drawing a button, double-
click it o open its handler and enter SMART followed by a period:

m

™ Project] - Form1 [Code] Hi=E

ISTEP j ICIick

Option Explicit

Priwvate Sub 2TEP Click()
SMART. B
End -&iClose =
| EF ComPort

— Eﬂ_.-;gg ConvertStringToTime
=B CorverdTimeToString
=& CueDissalve
=B CueFadeResume
=& CueFadeStop -

{I PI LL

-
&

36

Chapter 4: Reference

Accessing SMARTSCRIPT from
Other Forms

To access SMARTSCRIPT from handlers in other forms (eg, using a button in
another window), you must qualify the SMART object by prefixing it with the

name of the form containing the SMARTSCRIPT icon. Assuming that the
SMARTSCRIPT icon sits on a form named “Form1”, you can access it from

another form by typing the name of the form, a period, and then the name of
the SMARTSCRIPT object, followed by another period.

M Project] - AnotherForm [Code) Hi=E
IButtnnOnNeanrm j ICIick j

Option Explicit

-

Formml.SMART.

Frivate Sub ButtonOnMNewForm Click()

End Jub =®iClose

E& ComPort

f[: LL' =% ConvertStringToTime
=B CorverdTimeToString

=& CueDissalve

=& CueFadeResume

= CueFadeStop

'

M

Chapter 4: Reference

37

Accessing SMARTSCRIPT from Alternatively, you can make SMARTSCRIPT available to all handlers on all

All Form forms by publishing it using a global variable. Once this is done, you can refer
to the SMARTSCRIPT object using the name of this global variable. In essence,
the variable becomes a universally accessible alias to the SMARTSCRIPT icon.
In Visual Basic, you must establish this global variable in a separate code
module — it can not be established from within a form’s code module. To create
such a separate code module, choose “Add Module” on the Project menu, then
add the line shown below to that module.

*: Project] - Modulel [Code] [
|General) x| [mectarations)

m
]

Option Explicit

Puhlie 35 as SHJLRTScript|

1| PII‘_

E
N

38 Chapter 4: Reference

After having established this global variable, you must link it to the SMART-
SCRIPT icon you placed on the form. To do this, use a Set statement in the Load
handler of the form containing the SMARTSCRIPT icon. Double-click the back-
ground of the form containing the SMARTSCRIPT icon, and add the Load

handler as shown below:

IFnrm j ILnad j

Option Explicit ﬂ

Priwvate Jub Form Loadi)
Set 35 = SMART 'Makes SMARTScript globally available

End Sub
-

== 4| v 2

Once this is done, you can access SMARTSCRIPT from any handler through the
name of the global variable, in this case SS, followed by a period.

[NOTE: You can’t use the same name for the global variable and for the
SMARTSCRIPT icon. For the sake of consistency, you may prefer to access
SMARTSCRIPT through the global variable’s name even from handlers on
the main form. If not, code you copy from the main form to other forms will
no longer work, since the name is then no longer accessible.

Chapter 4: Reference 39

Calling Conventions When performing a cue or other SMARTSCRIPT command, you append any
parameters to the command. Parameters are comma separated:

§S.CueTriggerSwitch "Open”, KTS_On
In the above example, SS is the name of the SMARTSCRIPT global variable,

and CueTriggerSwitch is the name of the command to be performed. This
command takes two parameters; the reference to the switch device to be
controlled and what to do with it (ie, turning it on). There’s a blank between the
command and its first parameters. Subsequent parameters are separated by a
comma.

When typing the period following the SMART component name or SS variable
name, Visual Basic displays a list of SMARTSCRIPT’s commands and proper-
ties. Choose the desired item from this list, or type it on the keyboard. Press the
space bar to complete the command or property name. If the command
requires any additional parameters, a template for the expected parameters
will be displayed below the command.

™ Project] - Form1 [Code) = E3
IOpen j ICIick

ol

Private Sub Open Click()
33.CueTrigger3witch "Open®|
End CueTriggerSwitch(device, swichFunc As TrigSwitchType) |

A 4

40 Chapter 4: Reference

Functions

If a parameter can be specified using a constant, a list of the appropriate
constants will appear when you reach that parameter.

IOpen j ICIick j

Priwvate Sub Open Clickl)
SS.CueTriggerSwiEch fopen', |

End CueTriggerSwitchidievice, SWitC @ KTS_Off
=
E KT5_Pulse

In addition to commands, SMARTSCRIPT also provides some functions. The
main difference between a command (called a “Sub” in Visual Basic) and a
function is that a function returns a result to the script. This result can be stored
in a variable, or used in calculations and other expressions.

This is an example of how you can convert a timecode position from string
representation to numeric form:

numericTime = SS.ConvertStringToTime("“3:22/13", KTF_SMPTE_DropFrame)

There are two main differences between a function, as shown above, and
regular commands:

* Parameters to functions are enclosed within parentheses.

* The value returned from the function must be used in an expression or stored
in a variable.

Chapter 4: Reference 41

Properties

The function shown above converts the string “3:22/13" from SMPTE drop-
frame format to a number. This is often useful if you need to make calculations
involving time values. The result is stored in the variable named numericTime.

Certain aspects of SMARTSCRIPT can be controlled through properties. Some
properties simply provide alternative methods to perform some functions.
Other properties address ActiveX-specific details.

An advantage of properties is that they can be configured manually using the
Properties window. This allows you to specify which serial port to use and the
name of the system configuration file, without writing any program code (see
“Configuring SMARTSCRIPT” on page 22).

However, properties can also be accessed from your program. This statement
sets the IgnoreErrors property to True:

SS.IgnoreErrors = True

0 NOTE: When you stop running your Visual Basic program, properties
revert to their initial seftings, as specified manually in the Properties
window. Thus, if you change a property in your program and then stop the
program, the change won’t appear in the Properties window. To see the
value of a property while running, use the debugging capabilities built into
your development environment.

You can read or test the current value of a property simply by referring to it.
This is similar to how you access SMARTSCRIPT functions, but without the func-
tion parameters. The Visual Basic example below displays a message box if the
IgnoreErrors property is set to True:

if S.IgnoreErrors then MsgBox(“Warning: Error detection is currently disabled!”)

42

Chapter 4: Reference

This is a list of all the properties in the ActiveX implementation of SMART-

SCRIPT:

Property Description

Version Returns the version number of SMARTSCRIPT, as a three-
digit integer. The value 100 means version 1.0.0.

IgnoreErrors | Determines whether any runtime errors originating from Cue
commands should be ignored or reported. Possible values
are False and True.

ComPort Specifies which serial port to use to communicate with
SMARTPAX. Possible values are KCP_Unspecified,
KCP_COM1, KCP_COM?2, KCP_COM3 and KCP_COM4.

SysDescFile | Specifies the drive, path and file-name of the system descrip-

tion file, as a string.

Version. This property is read-only, and therefore doesn’t appear in the
Property window. It can only be accessed from your program.

IgnoreErrors. Set this property to True to ignore runtime errors originating
from cues. If set fo False, runtime errors will be reported, and may interrupt
P y P
your application by displaying an error message. Typically, you have this
property set to False during development and testing, and set it to True when
you compile the final application. See “Handling Errors” on page 71 for more

details.

Chapter 4: Reference 43

ComPort. This property is provided as an alternative to the Open command
to specify which serial port to use. If you specify the port using this property,
you must also specify the name of the system description file using the SysDesc-
File property.

SysDescFile. This property is provided as an alternative to the Open
command for specifying the name of the system description file (see “System
Description File” on page 14). If you specify the filename using this method,
you must also specify which serial port to use using the ComPort property.

[0 NOTE: Use the ComPort and SysDescFile properties in preference to the
Open command. It is it easier to change these seftings, and ensures that the
description file and serial port are opened without the need for any addi-
tional coding on your behalf. Furthermore, by using the properties instead
of the Open command, any errors will be reported at design time. If you use
the Open command, errors won’t be reported until runtime.

Additional Properties. The Property window in Visual Basic lists some
additional properties, such as Index and Tag. These are not used by SMART-
SCRIPT, and you should leave them blank. The Name property (displayed
within parentheses in the Property window) gives SMARTSCRIPT its name,
which is used to refer fo it in your program. Thus, if you change this property,
any scripts you have written using the old name will fail.

44

Chapter 4: Reference

Constants Some SMARTSCRIPT commands use predefined names to specify certain
parameters. These predefined names are called constants. For example, the
last parameter shown below is a constant defined by SMARTSCRIPT:

numericTime = SS.ConveriStringToTime(”3:22/13", KTF_SMPTE_DropFrame)

The KTF_SMPTE_DropFrame constant specifies from which kind of timecode to
convert. Note that constants are not strings, and therefore are not enclosed
within quotes.

When you reach a parameter that expects a constant, Visual Basic displays a
list of the applicable constants.

™ Project] - Form1 [Code) H= B3

I(General) j II]tTuCenti j

End Sub ZI

Private Function DfToCenti(Time As 3tring) As Integer
DEfToCenti = SS.CDnvertStringTDTime[Time,l i
End Function ComvertStringToTimedimedsStnng As Stnng, stringFormat As StrTimeFormat) A5 Long
| E KTF_MTSC_FilmFrames
== & KIF_NTSC_Frames

E KTF_PAL_Frames

E KTF_SMPTE_30

(&R TF_SMPTE_DropFrame
E KTF_SMPTE_MonDrap -

Chapter 4: Reference 45

Using the Object Browser To see a complete list of all available commands, functions, properties and
constants, use the “Object Browser” command on the View menu in Visual
Basic. Select DATATON_SMARTSCRIPT on the Library menu, click the desired
class in the Class list, and choose the item in the Members list. This displays
information about the selected item in the field at the bottom of the Object
Browser window.

‘= Object Browser M= E

II]ATA.TON_SMARTSCRIPT j <| >| |}ﬁ| il
| - 8| vl

|Classes Members of 'SMARTScript'

@ =qglohals= =% Close il
2 ComPorSel EE ComPort

BisMARTScript {1=® ConvertStringTaTime

2P StTimeFormat EeX ConvertTimeToString

=27 TrigSwitchType =% Cuelissole

2 TrigTrpType =% CueFadeResume LI
Function ConvertTimeToString{ centiseconds 45 Long, -

desiredFormat As StrTimeFormat) As String
Member of DATATON SMARTSCRIPTLibCtH SMARTScript
Converts a time, in centizeconds, to & string in the specified formst

Specifying Multiple Devices Sometimes you may want to apply a cue fo more than one device. Do so by
passing an array of device references as the device parameter to the
commanda:

§S.CueDissolve Array(“P1”, “P2"), 2.5, True

46 Chapter 4: Reference

Errors

This cue performs a 2.5 second dissolve on device P1 and P2. Notice how the
Array function, built into Visual Basic, is used to create the array on the fly. The
array can contain either device names or device indexes (see “Device Param-
eter” on page 49).

When an error occurs in SMARTSCRIPT, this information is passed back to the
host application, which typically displays an error message. The error message
includes the error code, which describes the cause for the error (see “Error
Codes” on page 70).

While such error messages are very useful in developing and debugging your
application, they’re generally not desired in the finished software. There are
two methods by which you can avoid such error messages; setting the
IgnoreErrors property to True or handling errors explicitly.

Once you have thoroughly debugged and tested your application, you
normally set the IgnoreErrors property to True before making the final applica-
tion. This will prevent most errors originating from CueXxx commands an
similar from being reported. In this case, when an error occurs, the command
will simply be ignored, and your application will continue to run as if no error
had occurred.

The other possibility is to use the error trapping capabilities built into the host
development environment. In Visual Basic, for example, you can use the “On
error” statement to control what fo do in case of an error. This method is
particularly useful when dealing with user input, where you may prefer to beep
or display a message if the user enters an invalid value. The “Timecode Calcu-
lator” form in the Visual Basic sample application demonstrates how this is
used to handle errors originating from the ConvertStringToTime function.

Chapter 4: Reference 47

Data Types In the syntax description of each command, function and property throughout
the remainder of this chapter you will find references to data types. Each
parameter to a function has a particular type, such as string or integer.

These are the types used in SMARTSCRIPT:

Data type Description

string A character string, enclosed in double quotes. Used to
specify device names and some other parameters.

infeger A whole number, such as 352, -23 or O.

float A number that accepts an optional fractional part, such as
3.97.

boolean A true/false value, specified using the corresponding

keywords of the host development language.

variant Indicates a parameter whose type may vary depending on
the circumstances. Also used for arrays.

constant A named identifier from a list of predefined constants
provided by SMARTSCRIPT, such as the StrTimeFormat
constants shown on page 66.

48 Chapter 4: Reference

Device Parameter The device parameter, used with all Cue commands, is defined as a variant
type. It can be any of the following three:

* A string, specifying the name of the device, such as “LDP”.

* An integer, specifying the index number of the device (see “DevName-
ToDevindex” on page 64).

* An array, containing either of the above. This allows you to specify multiple
devices to be affected by the same cue. In Visual Basic, you create an array
using the Array function. In Lingo, you simply enclose the array elements
within square brackets. See “Specifying Multiple Devices” on page 34 and
page 46 for examples.

Esfqblishing This section describes how to establish and tear down the communication
. . through SMARTSCRIPT. When using the Director Xtra implementation of

Communication SMAI%TSCRIPT, you must explicitly gpen and close the cof)nmunication. In the

Windows ActiveX implementation, you may use either the explicit Open and

Close commands, or use the ComPort and SysDescFile properties. If you use

the properties then you don’t need to call Open and Close (this is the recom-

mended method).

Open Opens the communications path through SMARTSCRIPT to the SMARTPAX
control units and the devices. You must specify the name of a serial port and
the name of the system description file. Unless the system description file is in
the same directory as your application, you must specify its full path name.

Syntax: Open siring configFileName, string serialPortName

ActiveX example: $5.0pen “C:\Dataton\MySystem.SDF”, “COM1”

Chapter 4: Reference 49

Xtra example:

Opens SMARTSCRIPT using the COM1 serial port and the system description
file named “MySystem.SDF”, located in the Dataton subdirectory on the C:
drive.

[0 NOTE: Do not use Open if you're using the ComPort and SysDescFile prop-
erties in the ActiveX implementation.

$SO0pen “HD:Dataton:MySystem.SDF”, “Modem”

Opens SMARTSCRIPT using the Macintosh Modem port and the system
description file named “MySystem.SDF”, located in the Dataton sub-folder on
the disk named “HD".

0 NOTE: When specifying a file path on MacOS, folder and file names are

separated by colon. Windows uses a backslash for this purpose.

Alternatively, you can store the system description file in the same folder as the
movie file. Then use the built-in Lingo function “the moviePath” fo access the
file, as shown in the example on page 16. This avoids putting a hard-coded
path specification in the script, thus making it more portable.

In order to make your SMARTSCRIPT application portable across platforms,
SMARTSCRIPT will silently convert between the following serial port names on
the Mac and the PC:

Macintosh serial port name PC serial port name
Modem COMI1
Printer COM2

50

Chapter 4: Reference

Close
Syntax:
ActiveX example:
Xtra example:
Version

Syntax:
ActiveX example:

Xtra example:

Closes SMARTSCRIPT, freeing the serial port and any other system resources it
may have been using.

Close
SS.Close

Do not use Close if you're using the ComPort and SysDescFile properties in the
ActiveX implementation.

$SClose

Returns the version number of SMARTSCRIPT, as an integer. The value 100
means version 1.0.0. You can use this to check which version number of
SMARTSCRIPT is being used, in case you depend on features made available
in a particular version.

integer Version
if SS.Version < 101 then MsgBox “SMARTSCRIPT is too old, update to the latest version”
if SSVersion() < 101 then Alert “SMARTSCRIPT is too old, update to the latest version”

(1 NOTE: In the ActiveX implementation, Version is implemented as a read-
only property. In the Xtra implementation it’s a function, as indicated by the
empty parentheses in the example above.

Chapter 4: Reference 51

ComPort Specifies which communications port to be used. This property is available only
in the ActiveX implementation of SMARTSCRIPT. In the Xtra implementation
you use the Open command to achieve the same result.

This property can also be set through the Properties window. If you specify the
ComPort property, you must also specify the SysDescFile property. Do not use
the Open command if you use these properties.

Syntax: ComPortSel ComPort

where ComPortSel is one of the following constants:

ComPortSel Description

KCP_Unspecified | Port not yet specified, or closed.
KCP_COMI1 Serial port COM1 being used.
KCP_COM2 Serial port COM2 being used.
KCP_COM3 Serial port COM3 being used.
KCP_COM4 Serial port COM4 being used.

ActiveX example: $S.ComPort = KCP_COM?2

Selects COM2 as the serial port to use to talk to the SMARTPAX units. Use one
of the predefined ComPortSel constants to specify this property.

SysDescFile Specifies the name of the system description file (see “System Description File”
on page 14). This property is available only in the ActiveX implementation of
SMARTSCRIPT. In the Xtra implementation you use the Open command to
achieve the same result.

52 Chapter 4: Reference

Syntax:

ActiveX example:

Performing Cues

This property can also be set through the Properties window. If you specify the
SysDescFile property, you must also specify the ComPort property. Do not use
the Open command if you use these properties.

string SysDescFile
§5.SysDescFile = “C:\Dataton\MySystem.SDF”

Opens the file named MySystem.SDF, located in the Dataton directory on the
C: drive.

The Cue commands control the devices connected through the SMARTPAX
units. These commands are modelled after the cues available in TRAX. Thus, if
you're familiar with TRAX, you will recognize all the cues and their parame-
ters. If you're unfamiliar with TRAX, you should read chapter 7 in the TRAX 3
manual (available free of charge at www.dataton.com, under the “free soft-
ware” heading).

All cues take as their first parameter a reference to the device or devices to be
controlled. You can refer to a device either using its name or its index number
(see “Device Parameter” on page 49). If you want to apply a cue to multiple
devices, you can specify an array of device references (see “Specifying
Multiple Devices” on page 34 and page 46).

All ActiveX examples below assume that you have a global variable named SS
that refers to the SMARTSCRIPT component (see “Accessing SMARTSCRIPT
from All Form” on page 38). Alternatively, you can name the SMARTSCRIPT
component itself SS, but then the examples will only work in handlers located
in the same form as the SMARTSCRIPT icon itself.

Chapter 4: Reference 53

CuelocateNumber

Syntax:

ActiveX example:

Xtra example:

CuelocateNumberRelative

Syntax:

ActiveX example:

Xtra example:

Locates a discrete, numeric position, such as a slide in a slide projector or a
song on a CD.

CueLocateNumber variant device, infeger numericPosition
§S.CuelocateNumber “Director”, 35
Locates position 35 in the device named “Director”.

SSCueLocateNumber 2, 0

Locates position O of the device with index 2.

Locates a numeric position relative the current position.

CueLocateNumberRelative variant device, integer number0fSteps
§S.CueLocateNumber "Denon”, -1

Locates the previous song on the device named “Denon”

SSCueLocateNumber "Denon”, -1

Locates a time position on a device having a continuous-time medium, such as
a tape or disc, that can be located to an arbitrary position or frame.

CuelocateTime variant device, infeger inTimelnCentiseconds, infeger outTimelnCentiseconds

The inTimelnCentiseconds parameter specifies the time position to locate, in
centiseconds. Use the ConvertStringToTime function to specify the time using
other standard timecode and frame-code formats (see “Time Formats” on page

65).

54 Chapter 4: Reference

CueSetTo

ActiveX example:

Xtra example:

Syntax:

ActiveX example:

Xtra example:

The outTimelnCentiseconds parameter specifies the target position where the

subsequent CueTriggerTransport play cue will stop automatically. This feature
is not supported by all devices. If you don’t want to specify an out point, then
set outTimelnCentiseconds to zero, as shown in the examples below.

§S.CueLocateTime "LDP", SS.ConvertStringToTime(“10:00”, KTF_EBU_25), 0

Locates the time position 10 minutes on the device named “LDP”. This example
uses the ConvertStringToTime function (see page 67) to convert from a human
readable time, as a string, to the standard time used in SMARTSCRIPT, which

is centiseconds.

SSCuelocateTime "Beta”, 350, 0

Locates the time position 350 on the device named “Beta”. The time specifies
centiseconds (ie, 350 equals 3 seconds and 50 hundredths). Use the Convert-
StringToTime function to specify the time using any other desired format.

Sets the output level to a percentage value. Controls audio, video, lighting, etc.

[0 IMPORTANT: For some devices, you must use this command fo set the
output level to 100 before you will see or hear anything while playing. This
includes many video disc players as well as some audio devices.

CueSetTo variant device, float levellnPercent
§S.CueSefTo "LDP", 100

Turns on the video output of the laserdisc player named “LDP”.

SSCueSefTo "Mic3", 65

Sets the level of microphone “Mic1” to 65 percent.

Chapter 4: Reference 55

CueFadeTo Fades the output level to specified percentage with the specified rate. This is
similar to CueSetTo, but allows you to fade the level gradually instead of setting
it instantly. It also allows you to fade multiple devices to individual levels.

If you specify an array of devices in the device parameter, you can specify a
corresponding array of target levels in the levellnPercent parameter. If you do,
each device will be faded to the corresponding level, allowing you to set a
complete lighting scene with one command, where each channel can have its
own value. See the Console form in the enclosed Visual Basic sample applica-
tion for an example of how this can be used.

Syntax: (ueFadeTo variant device, variant levellnPercent, float timelnSeconds

If device is an array, levellnPercent may be a corresponding array of levels. If
levellnPercent isn’t an array, or contains fewer elements than the device array,
the last (or only) value in the levellnPercent parameter will be applied to any
remaining devices in the device array. If levellnPercent contains more values
than device, the extraneous values will be ignored.

ActiveX example: SS.CueFadeTo Array("Ch1", "Ch2", "Ch3"), Array(75, 12, 20), 3.5

Fades the specified three lighting channels to the corresponding percentages
over 3.5 seconds.

Xtra example: SSCueFadeTo "Mic3", 0, 2

Fades out the sound channel “Mic3” using a two second fade rate.

To use arrays in the Xtra implementation (called “lists” in Lingo), simply enclose
the array elements in square brackets:

SSCueFadeTo ["Ch1", "Ch2", "Ch3", [75, 12, 20], 3.5

56 Chapter 4: Reference

CueFadeStop
Syntax:
ActiveX example:
Xtra example:
CueFadeResume

Syntax:
ActiveX example:

Xtra example:

Stops a fading or dissolve initiated by a CueFadeTo or CueDissolve command.
This can be used to stop a fading at its current level, for example to implement
“Up”, “Down” and “Stop” buttons.

CueFadeStop variant device
§S.CueFadeStop "Ch3"

Stops fading the light level of “Ch3” at its current level.
SSCueFadeStop "Mic3"

Resumes a fading stopped using the CueFadeStop command. The fading
resumes in the same direction and with the same rate as before it was stopped.
CueFadeResume variant device

$S.CueFadeResume"Ch3"

SSCueFadeResume "Mic3"

Chapter 4: Reference 57

CueTriggerSwitch Controls the output of a switch device (eg, a relay).

Syntax: CueTriggerSwitch variant device, TrigSwitchType whaiToDo

Where whatToDo is one of the following predefined constants:

TrigSwitchType Description

KTS_On Activates the switch

KTS_Off Releases the switch.

KTS_Pulse Pulses the switch for 0.2 second.

ActiveX example: SS.CueTriggerSwitch "ScrUp", KTS_On
Activates the switch named “ScrUp”.
Xtra example: SSCueTriggerSwitch "Open”, #KTS_Off

Releases the switch named “Open”.

[NOTE: In the Xtra implementation of SMARTSCRIPT, constants must be
prefixed with a #-sign.

58 Chapter 4: Reference

CueTriggerTransport Controls transport functions of players, such as audio and video disc devices
and tape devices.

Syntax: (ueTriggerTransport variant device, TrigTrpType whatToDo

Where whatToDo is one of the predefined constants:

TrigTrpType Description

KTT_Stop Stops the transport.

KTT_Pause Pauses the transport.

KTT_PlayFwd Plays forward.

KTT_PlayRev Plays backwards (not supported by all devices).
KTT_FastFwd Fast forwards the device.

KTT_FastRev Rewinds the device.

KTT_Record Starts recording (not supported by all devices).

ActiveX example: $5.CueTriggerTransport "LDP", KTT_PlayRev
Plays the device named “LDP” backwards.
Xtra example: SSCueTriggerTransport "Denon’, #KTT_Pause

Pauses the device named “Denon”.

[NOTE: In the Xtra implementation of SMARTSCRIPT, constants must be
prefixed with a #-sign.

Chapter 4: Reference 59

CueTriggerMode Controls device-specific modes available for some devices. Which modes are
available depends on the make and model of device being controlled. Some
devices don’t have any device specific modes.

The name of the modes and states applicable for a device are the same as
those used in TRAX. Thus, if you have TRAX available, you can use it to look
up the names of these features. If you don’t have TRAX available, you can see
these names under that device in the system description file.

Syntax: (ueTriggerMode variant device, string modeName, string stateName, integer numericValue

Sets the specified mode to the specified state with the specified value. A mode
acts as a multi-position switch, where the state is the position you wish to set it
to. In some cases, a state may take a numeric value. If so, this is indicated by
a #-sign at the end of the state name. Pass O here if the state doesn’t take @
value.

ActiveX example: $S.CueTriggerMode "LDP", “CX", “0ff", 0

Sets the “CX” mode of device “LDP” to “Off”. Although the value isn’t used, you
must still enter O here.

Xtra example: SSCueTriggerMode "VProj", “Contrast”, “Value#”, 190

Sets the value of the “Contrast” mode of device “VProj” to 190.

CueTriggerReset Resets the device fo its initial power-up state.

Syntax: (ueTriggerReset variant device
ActiveX example: SS.CueTriggerReset "LDP"
Xtra example: SSCueTriggerReset "P1"

60 Chapter 4: Reference

CueTriggerEject
Syntax:

ActiveX example:

Xtra example:

CueDissolve

Syntax:

ActiveX example:

Xtra example:

Ejects the medium from the device.

CueTriggerEject variant device
§S.CueTriggerEject "LDP"
SSCueTriggerEject "Beta"

Turns the light on or off for the specified slide projector device at the specified
rate. If the light was on prior to executing this command, it will be turned off,
and vice versa. If the light goes off and toStep is set to true then the projector
will advance to the next slide position after its light has gone out. This
command works only with slide projector devices.

CueDissolve variant device, float ratelnSeconds, boolean toStep
§S.CueDissolve Array("P1" “P2"), 3.5, True

Dissolves between the two slide projectors. The one that fades out will advance
its tray position.

SSCueDissolve ["P1", “P2"], 1, FALSE

Dissolves between the two slide projectors.

Chapter 4: Reference 61

CueFlashStart, CueFlashStop

Syntax:

ActiveX example:

Xtra example:

CueSnapHard, CueSnapSoft
Syntax:

ActiveX example:

Xtra example:

Starts and stops flashing the specified slide projector device at the specified
rate and with the specified duty-cycle. These commands works only with slide
projector devices.

CueFlashStart variant device, float ratelnSeconds, integer dutyCyclelnPercent
CueFlashStop variant device

§S.CueFlashStart “P17, 0.5, 50

Starts flashing the projector at an inferval of 0.5 seconds, at a 50% on/off
ratio.

SSCueFlashStart “P1”, 0.3, 70

Starts flashing the projector at an interval of 0.3 second interval and at a 70%
on and 30% off ratio.

Controls the mechanical or simulated shutter in the specified slide projector
device. These commands work only with slide projector devices.

CueSnapHard variant device, hoolean toClose
CueSnapSoft variant device, boolean toClose

§S.CueSnapHard “P1”, True

Closes the mechanical shutter in projector “P1”.
SSCueSnapSoft “P1”, FALSE

Opens the simulated shutter in projector “P1”. The simulated shutter can be
used to program flash effects while fading or dissolving.

62 Chapter 4: Reference

Device Indexing

DevCount

Syntax:

ActiveX example:

Xtra example:

The easiest way to specify a device when using cues is by name. Another possi-
bility is to specify devices using their index number. All Cue commands accept
either the name or the index number of the device (or an array of either of
those).

Using index numbers is sometimes more convenient if you need fo present a list
of devices to the user. Using indexes is also more efficient, particularly when
you access many devices repeatedly (for an example of how to do this, see the
Lighting Console form in the ActiveX sample program).

The following functions allow you to translate between device names and

indexes.

Returns the number of devices in the current system configuration. Device
indexes range from 1 to this number, inclusive. If the system description file
hasn’t been opened yet, this function returns 0.

integer DevCount()

for devindex = 1 fo SS.DevCount()
DevList.Addltem SS.DevindexToDevName(devindex)
next

Adds all device names to a dropdown menu named DevList.

repeat with devindex = 1 to SSDevCount()
put SSDevindexToDevName(devindex)
end repeat

Prints all device names in the message window.

Chapter 4: Reference 63

DevNameToDevindex

Syntax:

ActiveX example:

DevindexToDevName

Syntax:

ActiveX example:

Xtra example:

Given a device name, this function returns its corresponding index number,
which is always greater than 0. If the specified device doesn’t exist, this func-
tion returns O.

integer DevNameToDevindex(string deviceName)

for ch = 1 to kNumChannels
GChannels(ch-1) = SS.DevNameToDevindex(“Ch” & ch)
next

Caches the specified device indexes to avoid excessive name lookups when
later using these devices. The indexes are stored in an integer array named
GChannels, which can be used as the device parameter to the CueFadeTo
command. See the Console form in the Visual Basic sample application.

Given a device index, this function returns the name of that device. If the
specified device doesn’t exist, this function returns an empty string.

string DevindexToDevName(integer devicelndex)

for devindex = 1 to 5S.DevCount()
Devlist.Addltem SS.DevLisiToDevName(devindex)
next

Adds the device names to a dropdown menu named DevlList.

repeat with devindex = 1 to SSDevCount()
put SSDevLisiToDevName(devindex)
end repeat

Prints all device names in the Message window.

64

Chapter 4: Reference

Miscellaneous

ActiveX example:

Xtra example:

Time Formats

This group contains some miscellaneous commands, functions and properties
not directly related to controlling devices. This includes format conversion and
error management.

Converts a time from centiseconds to a string, representing the time in the
desired format.

string ConvertTimeToString(integer timelnCentiSeconds, StrTimeFormat desiredFormat)

See “Time Formats” below for a list of the constants that apply for the desired-
Format parameter.

numberOfframes = SS.ConvertTimeToString(60*100, KTF_NTSC_Frames)

Converts one minute (ie, 6000 hundredths of seconds) to the corresponding
number of NTSC frames.

put SSConvertTimeToString(10*60*100, #KTF_SMPTE_DropFrame)

Displays 10 minutes as an SMPTE (ie, NTSC) dropframe timecode readout.

[J NOTE: Constant names, such as KTF_SMPTE_DropFrame in the example
above, must be preceded by a #-sign in Lingo.

The ConverfTimeToString and ConvertStringToTime functions convert between
the SMARTSCRIPT time representation, which is centiseconds, and some other
commonly used timecode and framecode formats. While the standard time
representation makes it convenient to do calculations on time values, it is not
very practical from a user’s viewpoint. Hence the need to be able to convert
befween the internal, numeric time representation and other commonly used
formats.

Chapter 4: Reference 65

The standard time representation is a long integer that specifies the number of
hundredths of seconds since midnight; eg, 500 equals five seconds (5 * 100)
and 36000 equals 6 minutes (6 * 60 * 100). This is used for example as a
parameter to the CuelocateTime command.

All other time and framecode formats are represented as strings. This makes it
easy to display them in dialog boxes, or accept them as user input. The
fo||owing constants are used to specil:y the string format.

StrTimeFormat Constant

Description

KTF_Normal

KTF_FILM_24
KTF_EBU_25
KTF_SMPTE_NonDrop
KTF_SMPTE_DropFrame
KTF_SMPTE_30
KTF_PAL_Frames
KTF_NTSC_Frames
KTF_NTSC_FilmFrames

Normal time display, with hundredths of
seconds, as “HH:MM:SS.hh”

Film time display (24 frames per second).
EBU time display (25 fps).

SMPTE non-drop time display (29.97 fps).
SMPTE dropframe time display (29.97 fps).
SMPTE “black & white” time display (30 fps).
PAL frame-count.

NTSC 29.97 fps frame-count.

NTSC 24 film conversion format frame-count
(laserdisc).

[0 NOTE: For the frame-count formats, the first frame is numbered

//'I 4

See the “TCCalc” form in the Visual Basic sample application for examples on
how the conversion functions can be used.

66 Chapter 4: Reference

ConvertStringToTime

Syntax:

ActiveX example:

Xtra example:

This function performs the opposite of the ConvertTimeToString, and converts
back from a string representation (assumed to be in the specified format) to the
corresponding number of centiseconds.

integer ConvertStringToTime(string timelnSpecifiedFormat, StrTimeFormat timeFormat)

See “Time Formats” on page 65 for a list of the constants that apply for the
timeFormat parameter.

§S.CueLocateTime "LDP", SS.ConvertStringToTime("10:00”, KTF_EBU_25), 0

Locates the PAL video frame corresponding to the time 10 minutes.

whereToGo = SSConvertStringToTime(field “TimeEntry”, #KTF_SMPTE_DropFrame)

Picks up the user entry from the field named “TimeEntry”, translates it from
dropframe format to centiseconds, and stores the result in the variable where-
ToGo. This value can subsequently be used in a CuelocateTime command to
go to that time position.

Chapter 4: Reference 67

IgnoreErrors Controls whether errors in Cue commands are reported at run time. If set fo
True, the user won't be notified of such errors. If set to False, an error message
will be displayed when an error occurs.

Syntax: boolean IgnoreErrors
ActiveX example: SS.IgnoreErrors = True

Disables error messages originating from Cue commands. In the ActiveX
implementation IgnoreErrors is provided as a property, so you can set it either
in the Property window or through programming.

[0 IMPORTANT: In the ActiveX implementation, setting IgnoreErrors to True
disables all reporting of cue errors. Thus, you can’t use Visual Basic’s
Err.Number to retrieve the error code. If you want to handle errors yourself,
use the On Error statement in Visual Basic to specify your own error
handler, and set IgnoreErrors to False.

Xtra example: SSlgnoreErrors TRUE

Disables error messages originating from Cue commands. In the Xtra imple-
mentation, IgnoreErrors is provided as a command, which means that you
can’t read its current setting.

68 Chapter 4: Reference

LastError

Syntax:
Xtra example:

ActiveX example:

Returns the error code of the most recent SMARTSCRIPT command (see “Error
Codes” on page 70), or zero if the last command didn’t cause any error.

[0 NOTE: This function is only available in the Xtra implementation. The
ActiveX implementation uses the standard mechanisms for returning errors
to the host application.

integer LastError()
if SSLastError() < 0 then Alert “Invalid entry. Please try again.”

As mentioned above, the LastError function isn’t available in the ActiveX imple-
mentation, as ActiveX contains its own error handling mechanism. Use the
appropriate functions in your programming language to access the error code.
For example, in Visual Basic you obtain the most recent error from the Number
property of the Err object (ie, by referring to Err.Number). In order to use this
method, you must also tell Visual Basic that you want to handle errors yourself
using an On Error statement.

Chapter 4: Reference 69

Error Codes When commands fail, SMARTSCRIPT tells you what's wrong by displaying an
error message containing an error code. If possible, the offending line in your
program will be highlighted as well.

The table below lists the error categories, codes and values.

Category | Code Valve | Meaning

Open -2147220503 | 1001 | System description file not found.
-2147220502 | 1002 | Bad data in system description file.
-2147220501 | 1003 | Insufficient memory.

-2147220500 | 1004 | Too many devices in system description file.
-2147220499 | 1005 | Too many items in system description file.
-2147220498 | 1006 | SMARTSCRIPT was already open.
-2147220403 | 1101 | Specified communications port not available.
Cue 2147220303 | 1201 | No such device.

-2147220302 | 1202 | Cue can't be used with specified device.
-2147220301 | 1203 | Position parameter out of range.
-2147220300 | 1204 | Level parameter out of range.
-2147220299 | 1205 | Rate parameter out of range.
-2147220298 | 1206 | No such mode or state.

2147220297 | 1207 | Value out of range for specified state.
Convert -2147220203 | 1301 | Invalid time.

70 Chapter 4: Reference

Error Code and Value

Handling Errors

The category indicates the circumstances under which errors can occur; errors
in the Open category can occur when opening SMARTSCRIPT (ie, using the
Open command), errors in the Cue category comes from the various Cue
commands, efc.

When an error occurs, an error message will be displayed and the offending
line will be selected (if possible). The error message shows the error code and
in some cases some additional information.

[0 NOTE: Errors in the Cue category can be disabled using the IgnoreErrors
property/command.

The table above shows both an error code and an error value. As you can see,
the error value closely follows the category and error within each category.
However, in order to adhere to the standard for encoding errors that occur in
ActiveX and Xtra modules, error codes must be constructed in a specific way.
Error codes are 32 bit values where the upper 16 bits must contain 0x8004
(hex). Thus, the error code returned by SMARTSCRIPT is composed by assem-
bling the error value in the lower 16 bits with the value 0x8004 in the upper
16 bits. The result of this operation is the error code, as shown in the table. The
error code will come out negative if the resulting 32 bit number is shown as a
signed decimal number. In some cases, the error code may also be displayed
in hex.

While the above table may be helpful during debugging of your SMART-
SCRIPT applications, such error codes won’t make any sense to the user of your
finished application. Although your application, once debugged, may not
generate any errors of its own, errors may result from changes to the system
configuration, or as the result of user input.

Chapter 4: Reference 71

For example, if the system description file is moved or renamed, error code -
2147220503 (System description file not found) will be returned from the
Open command. Likewise, if you use the ConvertStringToTime function to
convert a value entered by the user in a dialog box, it will return error code -
2147220203 (Invalid time) if the string didn’t contain a valid time string.

In cases where you anticipate such errors, you can design your application to
handle them gracefully. In Visual Basic, you can use the On Error statement to
specify your own error handler. You can then retrieve the error code from
Err.Number. You can use the And operator to convert the error code to the
corresponding error value:

ErrorValue = Err.Number And &HFFFF
v IMPORTANT: Setting the IgnoreErrors property to True in the ActiveX im-

plementation masks all Cue errors so they won't be reported back to your
application. If you want to handle such errors yourself, make sure that the
IgnoreErrors property is set to False.

72

Chapter 4: Reference

Index

A
ActiveX 9, 19, 35
accessing SMARTSCRIPT from 35
calling conventions 40
constants 45
functions 41
obrowser 46
properties 42
Authorware. See Macromedia

B
boolean type 48
button

in Director 17
in Visual Basic 23

C

Close 51

COM port 50

ComPort 52

ComPort property 44
ComPortSel constants 52
constant type 48
ConvertStringToTime 67
ConvertTimeToString 65

CueDissolve 61
CueFadeResume 57
CueFadeStop 57
CueFadeTo 56
CueFlashXxxx 62
CuelocateNumber 54
CuelocateNumberRelative 54
CuelocateTime 54
cues, performing 53
CueSetTo 55
CueSnapXxxx 62
CueTriggerEject 61
CueTriggerMode 60
CueTriggerReset 60
CueTriggerSwitch 58
CueTriggerTransport 59

D
DevCount 63
device

indexing 63

parameter 49

specifying multiple 34, 46
device information 5
DevindexToDevName 64
DevNameToDevindex 64
Director. See Macromedia

I ndex

73

E

error 34, 47
codes 70
handling 71

Excel 28

F
float type 48
form, in Visual Basic 22, 37, 38

H
hardware hook-up 16, 19

I

IgnoreErrors 43, 68
Index property 44
installation 10
integer type 48

K

KCP_COM constants 52
KCP_Unspecified 52
KTF_Xxxx constants 66
KTS_Xxx constants 58
KTT_Xxxx constants 59

L
LastError 69

M

Macintosh 11

MacOS 11

Macromedia 9, 15, 16, 32

accessing SMARTSCRIPT from 32

calling conventions 32

constants 34

Director, example 26

functions 33
Microsoft. See ActiveX
Modem port 50

o
Open 49

P
PowerPoint 29
Printer port 50
properties window 22

S

SDF, file type 14

string type 48
StrTimeFormat constants 66
SysDescFile 44, 52

system description file 14

74 Index

T
Tag property 44
time formats 65
TRAX 7
device information database 5
device support window 4
TRAXSCRIPT 8
TrigSwitchType constants 58
TrigTrpType constants 59
types, of data 48

\"

variant type 48
Version 43, 51
Visual Basic 20, 30

\"."}
Windows 9
installation 12

X
Xtra 9

I ndex

75

	Table of Contents
	Introduction
	SMARTSCRIPT �Capabilities
	SMARTSCRIPT Cues

	Scripting Overview
	Other Scripting Languages
	Scripting versus TRAX
	SMARTSCRIPT versus �TRAXSCRIPT

	Component �Standards
	Windows
	Macromedia

	Installation
	MacOS
	Windows

	Getting Started
	System �Configuration
	System Description File

	Macromedia
	Hardware Hook-up
	Activating SMARTSCRIPT from Director
	Adding a Button to the Movie
	Where to Go from Here

	Windows
	Hardware Hook-up
	Creating the Visual Basic Project
	Adding SMARTSCRIPT to the Toolbox
	Adding SMARTSCRIPT to the Main Form
	Configuring SMARTSCRIPT
	Adding a Command Button to the Form
	Scripting the Button’s Action
	Running Your Script
	Where to Go from Here

	Examples
	Macromedia Director
	Microsoft Excel
	Microsoft PowerPoint
	Microsoft Visual Basic

	Reference
	Macromedia Details
	Accessing SMARTSCRIPT
	Calling Conventions
	Functions
	Constants
	Specifying Multiple Devices
	Errors

	Windows Details
	Accessing SMARTSCRIPT
	Accessing SMARTSCRIPT from Other Forms
	Accessing SMARTSCRIPT from All Form
	Calling Conventions
	Functions
	Properties
	Version
	IgnoreErrors
	ComPort
	SysDescFile
	Additional Properties

	Constants
	Using the Object Browser
	Specifying Multiple Devices
	Errors

	Data Types
	Device Parameter

	Establishing �Communication
	Open
	Close
	Version
	ComPort
	SysDescFile

	Performing Cues
	CueLocateNumber
	CueLocateNumberRelative
	CueLocateTime
	CueSetTo
	CueFadeTo
	CueFadeStop
	CueFadeResume
	CueTriggerSwitch
	CueTriggerTransport
	CueTriggerMode
	CueTriggerReset
	CueTriggerEject
	CueDissolve
	CueFlashStart, CueFlashStop
	CueSnapHard, CueSnapSoft

	Device Indexing
	DevCount
	DevNameToDevIndex
	DevIndexToDevName

	Miscellaneous
	ConvertTimeToString
	Time Formats
	ConvertStringToTime
	IgnoreErrors
	LastError

	Error Codes
	Error Code and Value
	Handling Errors

	Index

